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Abstract 

Magneto hydrodynamic MHD free convection flow, of an incompressible viscous fluid over 

an inclined porous surface with variable suction and radiation effect is presented. Using the 

perturbation technique, solution of the set of the non-linear partial differential equations of 

motion, energy and diffusion, are obtained by reducing them to ordinary differential equation 

which are solved analytically for velocity, temperature and the concentration distributions. 

Effect of parameters such as magnetic field, radiation, suction, chemical reaction on the 

velocity, temperature, concentration, heat transfer and the skin friction distributions are 

discussed. The results shows that increase in Radiation parameter leads to velocity increase 

due to increased dominance of conduction on the flow. It is also noted that the temperature 

increased as a result of absorption of radiant heat from the plate. Increased Magnetic 

parameter retards the velocity flow as a result of a thickened boundary layer caused by 

Lorentz force that opposes the flow of the fluid.  Increase in the chemical reaction parameter 

caused a reduced velocity flow and an increase in concentration due to the rise in the 

interfacial mass transfer and heat transfer. Increased values of suction parameter reduced 

the velocity of the fluid, concentration profile and heat transfer. The increase in the porosity 

parameter will cause a reduced resistance to the motion of the fluid which causes an increase 

in the velocity.  

 

Keywords: Free Convection, Radiation, Chemical Reaction, Inclined Plate, Porous Surface, 

Magneto Hydrodynamic (MHD), Variable Suction, 

 

1.0 Introduction 

Free convection flow in the presence of a magnetic field is important and this is because it 

has a significant effect on the boundary layer control and the performance of many 

engineering devices. Practical examples include MHD power generation, plasma studies, 

nuclear reactor using liquid metal coolant, geothermal energy extraction etc. When the 

temperature of a surrounding fluid becomes high, radiation effects play an important role. In 

such a case, one has to examine the effect of thermal radiation and mass diffusion. Radiative 

heat and mass transfer flow for the cases of vertical and horizontal flat plates have been 

attracting many researchers due to many applications in space technology and processes 

involving high temperatures such as thermal energy storage, nuclear power plants and gas 

turbines. The researches of Kays et al (2004), Mebine (2007), Singh and Kumar (2011) are 

worthy of note. Moreover, attention has been given to boundary layer flows adjacent to 

inclined plate. Rao et al. (2014) studied about the phenomenon of heat and mass transfer in 

the object of extensive research Such phenomena are observed in buoyancy induced motions 

in the atmosphere, in bodies of water, quasi solid bodies such as earth and so on. His study 

showed the effect of radiation and thermo-diffusion on non-Darcy convective heat and mass 

transfer flow of a viscous, electrically conducting fluid through a porous medium in the 
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presence of heat generating sources. Ramana Rendy et al. (2016) analyzed the effects of 

magneto hydrodynamic force and buoyancy on convective heat and mass transfer flow past a 

moving vertical porous plate in the presence of thermal radiation and chemical reaction. 

Srinivasacharya et al. (2016) studied mixed convection heat and mass transfer along a 

vertical plate embedded in a power-law fluid saturated Darcy porous medium with chemical 

reaction and radiation effects. 

 

Ziyauddin et al. (2010) studied the radiation effects on unsteady MHD natural convection 

flow in a porous medium with conjugate heat and mass transfer past a moving inclined plate 

in the presence of chemical reaction, variable temperature and mass diffusion.  

 

Venkateswarlu et al. (2015) analyzed the MHD unsteady flow of viscous, incompressible 

electrical conduction fluid over a vertical porous plate under the influence of thermal 

radiation and chemical reaction. A study was done by Tripathy  et al. (2015) on the heat and 

mass transfer effect in a boundary layer flow of an electrically conducting viscous fluid 

subject to transverse magnetic field past over a moving vertical plate through porous medium 

in the presence of heat source and chemical reaction. Sandeep et al. (2012) analyzed the 

Magneto hydrodynamic, Radiation and chemical reaction effects on unsteady flow, heat and 

mass transfer characteristics in a viscous, incompressible and electrically conduction fluid 

over a semi-infinite vertical porous plate through porous media. The porous plate was 

subjected to a transverse variable suction velocity. Sugunamma et al. (2013) studied MHD 

Radiation and chemical reaction effects on unsteady flow, heat and mass transfer in a viscous, 

incompressible and electrically conducting fluid over a semi-infinite vertical porous plate 

through porous media in presence of inclined magnetic field with porous plate subjected to a 

transverse variable suction velocity. Isreal-Cookey et al. (2003) investigated the influence of 

viscous dissipation and radiation on unsteady MHD free-convection flow past an infinite 

heated vertical plate in a porous medium with time-dependent suction. Veeresh et al. (2015) 

analyzed the heat and mass transfer in MHD free convection chemically reactive and 

radiative flow in a moving inclined porous plate with temperature dependent heat source and 

joule heating using regular perturbation technique 

 

2.0 Mathematical Formulation 

We consider an unsteady free convective flow of a viscous incompressible, chemically 

reactive and radiative fluid over a semi-infinite plate inclined at an angle α in the vertical 

direction. A magnetic field of constant intensity 𝐵0 is applied in the 𝑦-direction. The plate 

moves uniformly with velocity 𝑣0 in the 𝑥-direction, the temperature 𝑇𝑤 >  𝑇∞ and 

concentration 𝐶𝑤 > 𝐶∞are conditions at the wall and ambient regions respectively. We 

assume a homogeneous chemical reaction and that the Boussinesq approximation is valid. 

Hence the governing flow equations are as follows: 
𝜕v′

𝜕𝑦′  = 0                        (1) 

𝜕𝑢′

𝜕𝑡′
+ v′ 𝜕𝑢′

𝜕𝑦′
= 𝜈

𝜕2𝑢′

𝜕𝑦′
+

𝜕𝑈′

𝜕𝑡′
− [𝜇2 𝛿𝑐𝐵0

2

𝜌
+

𝜈

𝑘
] (𝑢′ − 𝑈′) + 𝑔𝛽𝑇(𝑇′ − 𝑇∞)𝑐𝑜𝑠 ∝ +𝑔𝛽𝐶(𝐶′ −

𝐶∞)𝑐𝑜𝑠 ∝                                                                                                                               (2) 
𝜕𝑇′

𝜕𝑡′ + v′ 𝜕𝑇′

𝜕𝑦′ =
𝐾

𝜌𝐶𝑝

𝜕2𝑇′

𝜕𝑦′2 +
𝜇

𝜌𝐶𝑝
[

𝜕𝑢′

𝜕𝑦′] −
𝐾

𝜌𝐶𝑝

𝜕𝑞𝑟
′

𝜕𝑦′       (3) 

𝜕𝐶′

𝜕𝑡′ + v′ 𝜕𝐶′

𝜕𝑦′ = 𝐷
𝜕2𝐶′

𝜕𝑦′2 − 𝐾𝑟
′(𝐶′ − 𝐶∞)        (4) 

 

The boundary conditions for the velocity (𝑢), temperature (𝑇) and concentration (𝐶) fields in 
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the above equations are: 

𝑢′ = 𝑢𝑠
′  ;  𝑇′ = 𝑇𝑤

′ ;  𝐶′ = 𝐶𝑤
′ ;                                                     at  𝑦 = 0                

𝑢′ = 0; 𝑇′ = 𝑇∞
′ ;  𝐶′ = 𝐶𝑤

′                                                    as 𝑦 → ∞              (5) 

 

From the continuity equation (1) 

𝑣 = −𝑣𝑜(1 + 𝜀𝐴𝑒𝑖𝜔𝑡)                              (6) 

Such that 𝜀𝐴 ≪ 1 and the negative sign indicates that the suction velocity is towards the 

porous surface. 

We adopt the Rosseland approximation for the radiative heat flux, 𝑞𝑟
′ . That is:  

𝑞𝑟
′ = −

4𝛿′

3𝑘′

𝜕𝑇′

𝜕𝑦′
= −

4𝛿′

3𝑘′
∇𝑇′                 (7a) 

where 𝛿′ is the Stefan-Boltzmann constant and 𝑘′ is the Rosseland mean absorption 

coefficient. Assuming that the temperature differences within the flow are sufficiently small 

that 𝑇′ may be expressed as a linear function of temperature, then 

𝑇′ = 4𝑇𝑂
3𝑇 − 3𝑇𝑂

′    

This implies that: 

𝑞𝑟
′ = −

16𝛿′𝑇𝑂
3

3𝑘′

𝜕𝑇

𝜕𝑦
                       (7b) 

 

In order to write the governing equations and boundary conditions in dimensionless form, the 

following non-dimensional quantities are introduced 

𝑦 =
v𝑜

′ 𝑦′

𝜈
;  𝑢 =

𝑢′

𝑉𝑂
 ;  𝑤 =

𝜈𝑤′

v𝑜
′2  ; 𝑡 =

v𝑜
′2

𝑡′

𝜈
 ; 𝑈 =

𝑈′

𝑉𝑂
 ;  𝜃 =

𝑇′−𝑇∞

𝑇𝑤
′ −𝑇∞

 ; 𝐶 =
𝐶′−𝐶∞

𝐶𝑤
′ −𝐶∞

                  (8) 

𝑀2 =
𝜈𝜇2𝛿𝑐𝐻𝑂

′2

𝜌v𝑜
′2  ;  χ2 =

𝜈2

𝐾v𝑜
′2  ;  𝐺𝑟𝑇

=
𝑔𝜈𝛽𝑇𝜃(𝑇𝑤

′−𝑇∞)

𝑉𝑂v𝑜
′2  ;  𝐺𝑟𝑐

=
𝑔𝜈𝛽𝐶𝐶(𝐶𝑤

′−𝐶∞)

𝑉𝑂v𝑜
′2  ; 𝜈 =

𝜇

𝜌
;𝑃𝑟 =

𝜇𝐶𝑝

𝑘
 ; 

𝑅2 =
16𝜈𝛿′𝑇𝑂

3

3𝑘′  ;  𝐸𝑐 =
𝑉𝑂

2

𝐶𝑝(𝑇𝑤
′ −𝑇∞)

; 𝑆𝑐 =
𝜈

𝐷
 ,  𝑢𝑠 =

𝑢𝑠
′

𝑉𝑂
     

         

The momentum, energy and diffusion equation in dimensionless form is written as 
𝜕𝑢

𝜕𝑡
− (1 + 𝜀𝐴𝑒𝑖𝜔𝑡)

𝜕𝑢

𝜕𝑦
=

𝜕2𝑢

𝜕𝑦2 +
𝜕𝑈

𝜕𝑡
− [(𝑀2 + χ2)(𝑢 − 𝑈)] + 𝐺𝑟𝑇

𝜃𝑐𝑜𝑠 ∝ +𝐺𝑟𝑐
𝐶𝑐𝑜𝑠 ∝        (9) 

𝑃𝑟
𝜕𝜃

𝜕𝑡
− 𝑃𝑟(1 + 𝜀𝐴𝑒𝑖𝜔𝑡)

𝜕𝜃

𝜕𝑦
= (1 + 𝑅2)

𝜕2𝜃

𝜕𝑦2 + 𝑃𝑟𝐸𝑐 (
𝜕𝑢

𝜕𝑦
)

2

          (10) 

𝑆𝑐
𝜕𝐶

𝜕𝑡
− 𝑆𝑐(1 + 𝜀𝐴𝑒𝑖𝜔𝑡)

𝜕𝐶

𝜕𝑦
=

𝜕2𝐶

𝜕𝑦2
− 𝑆𝑐𝐾𝑟𝐶            (11) 

 

𝑢 = 𝑢𝑠 ;  𝜃 = 1;  𝐶 = 1                                                             at  𝑦 = 0         (12) 

𝑢 → 0, 𝜃 → 0, 𝐶 → 0                                                         as 𝑦 → ∞         (13) 

 

In the above equations 𝑢 and 𝑣 are the velocity components, 𝑥 and 𝑦 are the Cartesian 

coordinates, α is the angle of inclination in the vertical direction of the semi-infinite moving 

plate. 𝑡′ is the time, 𝑇𝑤
′  is the temperature at the wall, 𝑇∞

′  is the reference temperature and 𝑔 is 

the acceleration due to gravity. 𝑣𝑜 is the suction velocity, 𝐻𝑂
2  is the constant magnetic field, 

K is the porosity parameter, 𝐶𝑝 is the specific heat capacity and 𝑀2 is the magnetic 

parameter. 𝐺𝑟𝑇
is Grashof temperature number, 𝑃𝑟 is the Prandtle number, 𝑅2 is the radiation 

parameter, 𝑈𝑜 is the mean velocity of 𝑈′ is the free stream velocity. 𝑞𝑟
′  is the radiation heat 

flux, 𝐸𝑐 is the Eckert number, 𝜀 is the small positive constant, 𝜌 is the density, 𝛽𝑇 is the 

coefficient of volume expansion due to temperature and 𝛽𝐶 is the coefficient of volume 

expansion due to concentration. χ2 is the Darcy number 𝛿 is the radiation absorption, 𝑘 is the 

coefficient of thermal conduction, 𝜔 is the free stream frequency oscillation, 𝜇 is the 
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permeability, ϑ𝑐 is the electrical conductivity, 𝐺𝑟𝑐
 is the modified Grashof number, 𝐾𝑟 is the 

chemical reaction parameter, 𝜃 is the temperature and 𝐶𝑤 is the concentration at the wall. 

 

3.0 Method of Solution 

Equations (2) – (4) are coupled nonlinear partial differential equations that is solved 

analytically and then reduced to a set of ordinary differential equations with the expressions 

for velocity (𝑢), temperature (𝜃) and concentration (C) of the fluid in dimensionless form as 

follows: 

𝑢(𝑦, 𝑡) = 𝑢𝑜(𝑦) + 𝜀𝑒𝑖𝜔𝑡𝑢1 + 0(𝜀2)            (14) 

𝜃(𝑦, 𝑡) = 𝜃𝑜(𝑦) + 𝜀𝑒𝑖𝜔𝑡𝜃1 + 0(𝜀2)            (15) 

𝐶(𝑦, 𝑡) = 𝐶𝑜(𝑦) + 𝜀𝑒𝑖𝜔𝑡𝐶1 + 0(𝜀2)            (16) 

Substituting equation (14) to (16) in the set of equations (9), (10) and (11) and equating non – 

harmonic and harmonic terms and neglecting the higher order terms of 0(𝜀2), the following 

set of ordinary differential equations are obtained with their boundary conditions. 

𝑢0
ᴵᴵ + 𝑢0

ᴵ − (𝑀2 + χ2)𝑢0 = −(𝑀2 + χ2) − 𝐺𝑟𝑇
𝜃0𝑐𝑜𝑠 ∝ − 𝐺𝑟𝑐

𝐶0𝑐𝑜𝑠 ∝    (17) 

(1 + 𝑅2)𝜃0
ᴵᴵ + 𝑃𝑟𝜃0

ᴵ = 𝑃𝑟𝐸𝑐𝑢0
ᴵ2         (18) 

𝐶0
ᴵᴵ + 𝑆𝑐𝐶0

ᴵ − 𝑆𝑐𝐾𝑟𝐶𝑜 = 0          (19) 

𝑢1
ᴵᴵ + 𝑢1

ᴵ − (𝑀2 + χ2 + 𝑖𝜔)𝑢1 = −𝐴𝑢0
ᴵ −  (𝑀2 + χ2 + 𝑖𝜔) − 𝐺𝑟𝑇

𝜃1𝑐𝑜𝑠 ∝ − 𝐺𝑟𝑐
𝐶1𝑐𝑜𝑠 ∝   (20) 

(1 + 𝑅2)𝜃1
ᴵᴵ + 𝑃𝑟𝜃1

ᴵ − 𝑃𝑟𝑖𝜔𝜃1 = −𝑃𝑟𝐴𝜃0
ᴵ − 2𝑃𝑟𝐸𝑐𝑢0

ᴵ 𝑢1
ᴵ       (21) 

𝐶1
ᴵᴵ + 𝑆𝑐𝐶1

ᴵ − (𝑆𝑐𝐾𝑟 + 𝑆𝑐𝑖𝜔)𝐶1 = −𝑆𝑐𝐴𝐶0
ᴵ         (22) 

 

Boundary conditions 

𝑢0 = 𝑢𝑠; 𝑢1 = 0; 𝜃0 = 1; , 𝜃1 = 1; 𝐶0 = 1; 𝐶1 = 1            at  𝑦 = 0               (23)  

𝑢0 → 0; 𝑢1 → 0; 𝜃0 → 0; , 𝜃1 → 0; 𝐶0 → 0; 𝐶1 → 0          as 𝑦 → ∞               (24) 

 

To solve the nonlinear coupled equations (17) – (22) we assume that the dissipation 

parameter (Eckert number 𝐸𝑐 ≪ 1) is small, and therefore advance an asymptotic expansion 

for the flow temperature and velocity as follows using the boundary condition in equation (23 

– 24): 

𝑢0(𝑦) = 𝑢𝑜1(𝑦) + 𝐸𝑐𝑢𝑜2(𝑦)  

𝜃0(𝑦) = 𝜃𝑜1(𝑦) + 𝐸𝑐𝜃𝑜2(𝑦)        (25) 

𝑢1(𝑦) = 𝑢11(𝑦) + 𝐸𝑐𝑢12(𝑦)   

𝜃1(𝑦) = 𝜃11(𝑦) + 𝐸𝑐𝜃12(𝑦)   

 

Substituting Eq. (25) into Eq. (17) – (24) we obtain the following sequence of approximation

  

𝑢01
ᴵᴵ + 𝑢01

ᴵ − (𝑀2 + χ2)𝑢𝑜1 = −(𝑀2 + χ2) − 𝐺𝑟𝑇
𝜃01𝑐𝑜𝑠 ∝ − 𝐺𝑟𝑐

𝐶0𝑐𝑜𝑠 ∝   (26) 

(1 + 𝑅2)𝜃01
ᴵᴵ + 𝑃𝑟𝜃01

ᴵ = 0                    (27) 

𝑢02
ᴵᴵ + 𝑢02

ᴵ − (𝑀2 + χ2)𝑢𝑜2 = −𝐺𝑟𝑇
𝜃02𝑐𝑜𝑠 ∝                                    (28) 

(1 + 𝑅2)𝜃02
ᴵᴵ + 𝑃𝑟𝜃02

ᴵ = −𝑃𝑟𝑢01
ᴵ

2
                   (29) 

 

with boundary conditions: 

𝑢01 =  𝑢𝑠, 𝜃01 = 1; 𝑢02 = 0 = 𝜃02                            at   𝑦 = 0              (30) 

𝑢01 → 0; 𝜃01 → 0; 𝑢02 → 0; 𝜃02 → 0;                   as  𝑦 → ∞               (31)  

 

𝑢11
ᴵᴵ + 𝑢11

ᴵ − (𝑀2 + χ2 + 𝑖𝜔)𝑢11 = −𝐴𝑢01
ᴵ −  (𝑀2 + χ2 + 𝑖𝜔) − 𝐺𝑟𝑇

𝜃11𝑐𝑜𝑠 ∝ − 𝐺𝑟𝑐
𝐶1𝑐𝑜𝑠 ∝      (32) 

(1 + 𝑅2)𝜃11
ᴵᴵ + 𝑃𝑟𝜃11

ᴵ − 𝑃𝑟𝑖𝜔𝜃11 = −𝑃𝑟𝐴𝜃01
ᴵ                  (33) 
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𝑢12
ᴵᴵ + 𝑢12

ᴵ − (𝑀2 + χ2 + 𝑖𝜔)𝑢12 = −𝐴𝑢02
ᴵ − 𝐺𝑟𝑇

𝜃12𝑐𝑜𝑠 ∝               (34) 

(1 + 𝑅2)𝜃12
ᴵᴵ + 𝑃𝑟𝜃12

ᴵ − 𝑃𝑟𝑖𝜔𝜃12 = −𝑃𝑟𝐴𝜃02
ᴵ − 2𝑃𝑟𝑢11

ᴵ 𝑢01
ᴵ                (35) 

 

Boundary condition 

𝑢11 = 0 = 𝜃11 = 0; 𝑢12 = 0 = 𝜃12;                          at  𝑦 = 0                           (36)  

𝑢11 → 0; 𝜃11 → 0; 𝑢12 → 0; 𝜃12 → 0;                      as  𝑦 → ∞    (37) 

 

where  𝑁1 = (𝑀2 + χ2); 𝑁2 = 𝑀2 + χ2 + 𝑖𝜔 solving equations (26) – (29) with the boundary 

conditions (30) – (31) and equation (32) – (35) satisfying the boundary condition (36) – (37), 

we have  

𝑢(𝑦, 𝑡) = 𝐷1𝑒−𝑚3𝑦−𝐷2𝑒−𝑚2𝑦 − 𝐷3𝑒−𝑚1𝑦 − 1 + 𝐸𝑐[𝐷11𝑒−𝑚5𝑦 − 𝐷12𝑒−𝑚4𝑦 + 𝐷13𝑒−2𝑚3𝑦 +

𝐷14𝑒−2𝑚2𝑦 + 𝐷15𝑒−2𝑚1𝑦 − 𝐷16𝑒−(𝑚2+𝑚3)𝑦 − 𝐷17𝑒−(𝑚1+𝑚3)𝑦 − 𝐷18𝑒−(𝑚1+𝑚2)𝑦] +

𝜀𝑒𝑖𝜔𝑡{𝐷23𝑒−𝑚8𝑦 − 𝐷24𝑒−𝑚7𝑦 − 𝐷26𝑒−𝑚6𝑦 + 𝐷28𝑒−𝑚3𝑦 − 𝐿1𝑒−𝑚2𝑦 − 𝐿2𝑒−𝑚1𝑦 + 1 +

𝐸𝑐[𝐷57𝑒−𝑚10𝑦 + 𝐷58𝑒−𝑚5𝑦 − 𝐷59𝑒−𝑚4𝑦 + 𝐷60𝑒−2𝑚3𝑦 + 𝐷61𝑒−2𝑚2𝑦 + 𝐷62𝑒−2𝑚1𝑦 −

𝐷63𝑒−(𝑚2+𝑚3)𝑦 − 𝐷64𝑒−(𝑚1+𝑚3)𝑦 − 𝐷65𝑒−(𝑚1+𝑚2)𝑦 − 𝐷66𝑒−𝑚9𝑦 − 𝐷67𝑒−𝑚4𝑦 + 𝐷68𝑒−2𝑚3𝑦 +

𝐷69𝑒−2𝑚2𝑦 + 𝐷70𝑒−2𝑚1𝑦 − 𝐷71𝑒−(𝑚2+𝑚3)𝑦 − 𝐷72𝑒−(𝑚1+𝑚3)𝑦 + 𝐷73𝑒−(𝑚1+𝑚2)𝑦 +

𝐷74𝑒−(𝑚3+𝑚8)𝑦 + 𝐷75𝑒−(𝑚2+𝑚8)𝑦 − 𝐷76𝑒−(𝑚1+𝑚8)𝑦 − 𝐷77𝑒−(𝑚3+𝑚7)𝑦 + 𝐷78𝑒−(𝑚2+𝑚7)𝑦 +

𝐷79𝑒−(𝑚1+𝑚7)𝑦 − 𝐷80𝑒−(𝑚3+𝑚6)𝑦 + 𝐷81𝑒−(𝑚2+𝑚6)𝑦 + 𝐷82𝑒−(𝑚1+𝑚6)𝑦]}      (38) 

𝜃(𝑦, 𝑡) = 𝑒−𝑚2𝑦 + 𝐸𝑐[𝐷4𝑒−𝑚4𝑦 − 𝐷5𝑒−2𝑚3𝑦 − 𝐷6𝑒−2𝑚2𝑦 − 𝐷7𝑒−2𝑚1𝑦 + 𝐷8𝑒−(𝑚2+𝑚3)𝑦 +

𝐷9𝑒−(𝑚1+𝑚3)𝑦 − 𝐷10𝑒−(𝑚1+𝑚2)𝑦] + 𝜀𝑒𝑖𝜔𝑡{𝐷21𝑒−𝑚7𝑦 + 𝐷22𝑒−𝑚2𝑦 + 𝐸𝑐[𝐷31𝑒−𝑚9𝑦 + 𝐷32𝑒−𝑚4𝑦 −

𝐿3𝑒−𝑚3𝑦 − 𝐿4𝑒−𝑚2𝑦 − 𝐿5𝑒−𝑚1𝑦 + 𝐿6𝑒−(𝑚2+𝑚3)𝑦 + 𝐿7𝑒−(𝑚1+𝑚3)𝑦 − 𝐿8𝑒−(𝑚1+𝑚2)𝑦 −

𝐷39𝑒−(𝑚3+𝑚8)𝑦 + 𝐷40𝑒−(𝑚2+𝑚8)𝑦 + 𝐷41𝑒−(𝑚1+𝑚8)𝑦 + 𝐷42𝑒−(𝑚3+𝑚7)𝑦 − 𝐷43𝑒−(𝑚2+𝑚7)𝑦 −

𝐷44𝑒−(𝑚1+𝑚7)𝑦 + 𝐷45𝑒−(𝑚3+𝑚6)𝑦 − 𝐷46𝑒−(𝑚2+𝑚6)𝑦 − 𝐷47𝑒−(𝑚1+𝑚6)𝑦]}      (39) 

𝐶(𝑦, 𝑡) = 𝑒−𝑚1𝑦 + 𝜀𝑒𝑖𝜔𝑡{𝐷19𝑒−𝑚6𝑦 + 𝐷20𝑒−𝑚1𝑦}                     (40) 

 

The physical quantities of interest are the wall shear stress 𝜏𝑤 is given by 

𝜏𝑤 = 𝜇
𝜕𝑢𝐼

𝜕𝑦𝐼 = 𝜌𝑣0
2𝑢𝐼(0)  

The local skin friction factor  

𝐶𝑓𝑥 =
𝜏𝑤

𝜌𝑣0
2 = 𝑢𝐼(0) = −𝑚3𝐷1 + 𝑚2𝐷2 + 𝑚1𝐷3 + 𝐸𝑐[−𝑚5𝐷11 + 𝑚4𝐷12 − 2𝑚3𝐷13 − 2𝑚2𝐷14 −

2𝑚1𝐷15 + (𝑚2 + 𝑚3)𝐷16 + (𝑚1 + 𝑚3)𝐷17 + (𝑚1 + 𝑚2)𝐷18] + 𝜀[−𝑚8𝐷23 + 𝑚7𝐷24 + 𝑚6𝐷26 −
𝑚3𝐷28 + 𝑚2𝐿1 + 𝑚1𝐿3 + 𝐸𝑐(−𝑚10𝐷57 − 𝑚5𝐷58 + 𝑚4𝐿9 − 2𝑚3𝐿10 − 2𝑚2𝐿11 − 2𝑚1𝐿12 −
(𝑚2 + 𝑚3)𝐿13 + (𝑚1 + 𝑚3)𝐿14 + (𝑚1 + 𝑚2)𝐿15 + 𝑚9𝐷66 − (𝑚3 + 𝑚8)𝐷74 − (𝑚2 + 𝑚8)𝐷75 +
(𝑚1 + 𝑚8)𝐷76 + (𝑚3 + 𝑚7)𝐷77 − (𝑚2 + 𝑚7)𝐷78 − (𝑚1 + 𝑚7)𝐷79 + (𝑚3 + 𝑚6)𝐷80 −
(𝑚2 + 𝑚6)𝐷81 − (𝑚1 + 𝑚6)𝐷82)]                                                      (41) 

 
𝑁𝑢𝑥

𝑅𝑒𝑥
=

𝜕𝜃

𝜕𝑦
= 𝜃𝐼(0) = −𝑚2 + 𝐸𝑐[−𝑚4𝐷4 + 2𝑚3𝐷5 + 2𝑚2𝐷6 + 2𝑚1𝐷7 − (𝑚2 + 𝑚3)𝐷8 =

−(𝑚1 + 𝑚3)𝐷9 + (𝑚1 + 𝑚2)𝐷10] + 𝜀[−𝑚7𝐷21 − 𝑚2𝐷22 + 𝐸𝑐(−𝑚9𝐷31 − 𝑚4𝐷32 + 2𝑚2𝐿3 +
2𝑚1𝐿5 − (𝑚2 + 𝑚3)𝐿6 − (𝑚1 + 𝑚3)𝐿7 + (𝑚1 + 𝑚2)𝐿8 + (𝑚3 + 𝑚8)𝐷39 + (𝑚2 + 𝑚8)𝐷40 −
(𝑚1 + 𝑚8)𝐷41 − (𝑚3 + 𝑚7)𝐷42 + (𝑚2 + 𝑚7)𝐷43 + (𝑚1 + 𝑚7)𝐷44 − (𝑚3 + 𝑚6)𝐷45 +
(𝑚2 + 𝑚6)𝐷46 + (𝑚1 + 𝑚6)𝐷47)]                                                     (42) 

 

The local surface mass flux is given by 
𝑆ℎ𝑥

𝑅𝑒𝑥
= −

𝜕𝐶

𝜕𝑦
 = 𝐶𝐼(0) = −𝑚1 − 𝜀(𝑚6𝐷19 + 𝑚1𝐷20)     (43) 

 

4.0 Results and Discussion 

For various parameter values, we have shown plots indicating the effects of the major 
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parameters governing flow. Consequently, we present our interpretation of the results. It is 

observed in Figure 4.1 that increase in the radiation parameter leads to increase in the 

velocity. This is as a result of increased dominance of conduction due to the increase in 

radiation. There is therefore increase in the buoyancy forces in the boundary layer which 

ultimately increases the fluid velocity. The effect of the magnetic field is shown in Figure 4.2. 

The profile shows that increase in the magnetic field retards the flow velocity. Physically this 

is because the Lorentz force thickens the boundary layer and therefore reduces the flow 

velocity. In figure 4.3 we see that the velocity of the fluid decreases with increasing value of 

the suction. The suction is towards the plate, this in effect has reducing consequences on the 

flow velocity. It is observed in Figure 4.4 that increase in the chemical reaction parameter 

decreases the velocity. The effect is more pronounced in the vicinity of the boundary layer. 

Figure 4.5 illustrates the effect of the Grashof number on the velocity. The fluid velocity 

increases as the Grashof number increases. This is because the plate is being cooled with 

convection currents which results in the increase of the velocity. In figure 4.6 we notice 

similar effect when the modified Grashof number is increased. The effect of the porosity 

parameter is depicted in figure 4.7. It shows that increase in the porosity term reduces the 

resistance to motion of the fluid, hence the velocity is increased. The profile of the variation 

in the inclination of the plate is shown in figure 4.8. The velocity decreases with increasing 

value of the inclination parameter 𝛼. At 𝛼 = 10𝑜 ,  the velocity profile peaks up close to the 

plate and thereafter reduces at the free stream. At  𝛼 ≥ 20𝑜 , the velocity is significantly 

reduced, showing downward trend all through. It is observed in Figure 4.9 that the fluid 

temperature increases with increase in thermal radiation. This physically shows that there is 

absorption of radiant heat from the vertical plate and therefor increases the fluid temperature. 

Figure 4.10 illustrates the effect of the Grashof number o the temperature. The temperature of 

the fluid decreases with increasing values of the Grashof number. Physically this is true as the 

Grashof number is associated with cooling of the plate. Chemical reaction parameter is 

important in this flow model especially in the concentration profile. It is observed in Figure 

4.11 that the concentration increases with increase in the chemical reaction. The chemical 

reaction raises the rate of interfacial mass transfer and reduces local concentration. This leads 

to increase in concentration gradient/flux. The concentration profile decrease as the suction 

parameter is increased. In Figure 4.12 the effect of porosity on heat transfer is illustrated. It is 

observed that the heat transfer increases with porosity and further with increase in the 

Grashof number. Increase in the suction and magnetic parameter both show decrease in the 

rate of heat transfer as in Figure 4.13. Figure 4.14 shows the effect of magnetic field on the 

skin friction with variable radiation. It is observed from the profile that increase in the 

magnetic parameter increases the skin friction. The variability on the radiation parameter 

shows no remarkable influence on the skin friction with respect to the effect of magnetic 

field. 
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Figure 4.1: Velocity Profile with 

Variation of Radiation Parameter 𝑹 for 

𝐴 = 1, 𝐾𝑟 = 2, 𝑀 = 2, 𝑃𝑟 = 0.71, 𝐺𝑟 =
15, 𝐺𝑐 = 10, 𝐸𝑐 = 0.01, 𝑆𝑐 = 0.22, χ =
0.2, 𝛼 = 10, 𝜔 = 1, 𝑡 = 1, 𝜀 = 0.1, 𝑢𝑠 =
1 
 

 
 

 

Figure 4.1: Velocity Profile with 

Variation of Radiation Parameter 𝑹 for 

𝐴 = 1, 𝐾𝑟 = 2, 𝑅 = 0.2, 𝑃𝑟 = 0.71, 𝐺𝑟 =
15,  𝐺𝑐 = 10, 𝐸𝑐 = 0.01, 𝑆𝑐 = 0.22, χ =
0.2, 𝛼 = 10, 𝜔 = 1, 𝑡 = 1, 𝜀 = 0.1, 𝑢𝑠 =
1  
 

 
 

 

Figure 4.3: Velocity Profile with 

Variation of Suction Parameter 𝑨 for 

𝑅 = 0.1, 𝐾𝑟 = 2, 𝑀 = 2, 𝑃𝑟 =  0.71, 𝐺𝑟 =
15, 𝐺𝑐 = 10, 𝐸𝑐 = 0.01, 𝑆𝑐 = 0.2, χ =
0.2, 𝛼 = 10, 𝜔 = 1, 𝑡 = 1, 𝜀 = 0.1, 𝑢𝑠 =
1  
   

 
    

 

Figure 4.4: Velocity Profile with 

Variation of Chemical Parameter 𝑲𝒓 for 

𝑅 = 0.2, 𝐴 = 1, 𝑀 = 2, 𝑃𝑟  0.71, 𝐺𝑟 =
15, 𝐺𝑐 = 10, 𝐸𝑐 = 0.01, 𝑆𝑐 = 0.2, χ =
0.2, 𝛼 = 10, 𝜔 = 1, 𝑡 = 1, 𝜀 = 0.1, 𝑢𝑠 =
1  
         

 
 

Figure 4.5: Velocity Profile with 

Variation of Grashof Number 

Parameter 𝑮𝒓 for 𝑅 = 0.2, 𝐴 = 1, 𝐾𝑟 =
 2, 𝑀 = 3, 𝑃𝑟 = 0.71, 𝐺𝑐 = 10, 𝐸𝑐 =
0.01, 𝑆𝑐 = 0.22, χ = 0.2, 𝛼 = 10, 𝜔 =
1, 𝑡 = 1, 𝜀 = 0.1, 𝑢𝑠 = 1  
 

 
 

 

Figure 4.6: Velocity Profile with 

Variation of Grashof Number 

Parameter 𝑮𝒄  for 𝑅 = 0.2, 𝐴 = 1, 𝐾𝑟 =
2, 𝑀 = 3, 𝑃𝑟 = 0.71, 𝐺𝑟 = 15, 𝐸𝑐 =
0.01, 𝑆𝑐 = 0.22, χ = 0.2, 𝛼 = 10, 𝜔 =
1, 𝑡 = 1, 𝜀 = 0.1, 𝑢𝑠 = 1  
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Figure 4.7: Velocity Profile with 

Variation of Porosity Parameter 𝛘  for 

 𝑅 = 0.2, 𝐴 = 1, 𝐾𝑟 = 2, 𝑀 =  3, 𝑃𝑟 =
0.71, 𝐺𝑟 = 15, 𝐺𝑐 = 10, 𝐸𝑐 = 0.02, 𝑆𝑐 =
0.22, 𝛼 = 10, 𝜔 = 1, 𝑡 = 1, 𝜀 = 0.1, 𝑢𝑠 =
1 

 
 

 

Figure 4.8: Velocity Profile with 

Variation of Angular Parameter 𝛂 for 

𝑅 = 0.2, 𝐴 = 1, 𝐾𝑟 = 2, 𝑀 = 3, 𝑃𝑟 =
0.71, 𝐺𝑟 = 15, 𝐺𝑐 = 10, 𝐸𝑐 = 0.02, 𝑆𝑐 =
0.22, χ = 0.2, 𝜔 = 1, 𝑡 = 1, 𝜀 = 0.1, 𝑢𝑠 =
1  

 
 

Figure 4.9:        Temperature Profile 

with Variation of Radiation Parameter 

𝑹 for 𝐴 = 1, 𝐾𝑟 = 2, 𝑀 = 2,    𝑃𝑟 =
0.71, 𝐺𝑟 = 15, 𝐺𝑐 = 10, 𝐸𝑐 = 0.01, 𝑆𝑐 =
0.2, χ = 0.2, 𝛼 = 10, 𝜔 = 1, 𝑡 = 1, 𝜀 =
0.1, 𝑢𝑠 = 1  
 

 
 

 

Figure 4.10: Temperature Profile with 

Variation of Grashof Number 

Parameter 𝑮𝒓 for  𝑅 = 0.3, 𝐴 = 1, 𝐾𝑟 =
2, 𝑀 = 2, 𝑃𝑟 = 0.71, 𝐺𝑐 = 10, 𝐸𝑐 =
0.1, 𝑆𝑐 = 0.2, χ = 0.2, 𝛼 = 10, 𝜔 = 1, 𝑡 =
1, 𝜀 = 0.1, 𝑢𝑠 = 1  
 

 
 

                          

 Figure 4.11: Concentration Profile with 

Variation of Chemical 

Parameter 𝑲𝒓 for    𝐴 =
1, 𝑃𝑟 = 0.71, 𝑆𝑐 =
0.22, 𝜔 = 0.01, 𝑡 =
0.2, 𝜀 = 1, 𝑢𝑠 = 1  

 

 
 

Figure 4.12: Heat Transfer Profile 

with Variation of Porosity Parameter 𝛘 

for 𝑅 = 2, 𝐴 = 1, 𝐾𝑟 = 2, 𝑀 = 3, 𝑃𝑟 =
0.71, 𝐸𝑐 = 0.2, 𝑆𝑐 = 0.2, 𝛼 = 10, 𝜔 =
1, 𝑡 = 1, 𝜀 = 0.1, 𝑢𝑠 = 1  
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Figure 4.13:       Heat transfer Profile with Variation of Suction Parameter 𝑨 for 𝐾𝑟 =
2, 𝑀 = 2, 𝑃𝑟 = 0.71, 𝐺𝑟 = 15, 𝐺𝑐 = 10, 𝐸𝑐 = 0.01, 𝑆𝑐 = 0.2, χ = 0.2, 𝛼 = 10, 𝜔 = 1, 𝑡 =
1, 𝜀 = 0.1, 𝑢𝑠 = 1  
                

         

 
 

Figure 4.14: Heat Transfer Profile with Variation of Magnetic Parameter 𝑴 for 

𝐴 = 1,    𝐾𝑟 = 2,        𝑃𝑟 = 0.71, 𝐺𝑟 =
15, 𝐺𝑐 = 10, 𝐸𝑐 = 0.01, 𝑆𝑐 = 0.2, χ =
0.2, 𝛼 = 10, 𝜔 = 1, 𝑡 = 1, 𝜀 = 0.1 𝑢𝑠 = 1 

                                                                                                                                                                                                                                                                           

 

 

 

6.0 Conclusion 

In conclusion therefore, the radiation and chemical reaction effect on MHD free convective 

flow over an inclined porous plate with variable suction and other parameter effect on the 

flow are summarized as follows, Radiation parameter increase led to velocity increase as a 

result of increased dominance of conduction, temperature increased as a result of absorption 

of radiant heat from the plate that is inclined and an increase on heat transfer but no effect on 

the Skin friction. Increased Magnetic parameter retards the velocity flow as a result of a 

thickened boundary layer caused by Lorentz force that opposes the flow of the fluid. 

Reduction of the temperature of the fluid at the wall of the plate that is inclined and a 

decrease in the rate of heat transfer but an increase in Skin friction. Increase in the chemical 

reaction parameter caused a reduced velocity flow but an increase in concentration due to the 

rise in the interfacial mass transfer and heat transfer. Increased values of suction parameter 

reduced the velocity flow, concentration profile and heat transfer. The increase in the porosity 

parameter led to a reduced resistance to the motion of the fluid and therefore an increase in 

the velocity. Increase in Grashof number cooled the plate due to convective current with 

increase in both velocity and heat transfer and decreased in both skin friction and temperature 

of the fluid while skin friction increased due to an increase in Schmidt number.  

 

References 

Israel-Cookey C., Ogulu A. and Omubo-Pepple V.B. (2003) Influence of viscous dissipation 

and radiation on unsteady MHD free-convection flow past an infinite heated vertical 

𝑅 

𝐴 = 1,3,5,7 
𝑁𝑢 

𝑀 = 2, 4, 6, 8 

𝐶𝑓 

𝑅 



International Journal of Applied Science and Mathematical Theory ISSN 2489-009X Vol. 4 No. 3 2018 

www.iiardpub.org 

  

 
IIARD – International Institute of Academic Research and Development 

 
Page 39 

plate in a porous medium with time-dependent suction, International Journal of Heat 

and Mass Transfer 46,  2305–2311 

Kays W; Crawford M. and Weigand, B (2004). Convective Heat and Mass Transfer, 4E. 

McGraw-Hill Professional 

Mebine P (2007) Thermosolutal MHD flow with radiative heat transfer past an oscillating 

plate. Advances in Theoretical and Applied Mathematics, 2, 3, pp 217-231 

Ramana Reddy G. V., N. BhaskarBeddy and R.S.R. Gorla (2016) Radiation and chemical 

reaction effects on MHD flow Along a moving vertical porous plate Int. J. Of Applied 

Mechanics and Engineering, vol.21, no.1, pp.157-168  

Rao S.R., Rao U.R., and Rao, D.R.V.P. (2014) Mixed convective heat and mass transfer flow 

of a viscous fluid in a vertical channel with thermal radiation and soret effect, 

International Journal of Mathematical Archive 5(3), 59-70. 

Sandeep N., Vijaya Bhaskar A. and Reddy V. S (2012) Effect of Radiation and Chemical 

Reaction on Transient MHD Free Convective Flow over a Vertical Plate through 

Porous Media. S.V.U College of Mathematical and Physical Sciences, ISSN 2224-

7467 (Paper) ISSN 2225-0913 (Online)Vol 2,  

Singh K. D. and Kumar R. (2011) “Fluctuating Heat and Mass Transfer on Unsteady MHD 

Free Convection Flow of Radiating and Reacting Fluid past a Vertical Porous Plate in 

Slip- Flow Regime,” vol. 4, no. 4, pp. 101–106. 

Srinivasacharya D, Swamy Reddy G, (2016) Chemical reaction and radiation effects on 

mixedconvection heat and mass transfer over a vertical plate in power-law fluid 

saturated porous medium.  Journal of the Egyptian Mathematical Society  24, 108–

115. 

Sugunamma V., Sandeep N., P. Mohan Krishna,Ramana Bahunadam. (2013) Inclined 

Magnetic field and Chemical Reaction Effects on Flow over a Semi Infinite Vertical 

Porous Plate through Porous Medium Communications in Applied Sciences. Vol. 1, 

Number 1, 1-24 

Tripathy R.S., Dash G.C., Mishra S.R. and Baag S. (2015) Chemical reaction effect on MHD 

free convective surface over a moving vertical plate through porous medium. 

Alexandria Engineering Journal  54, 673–679 

Veeresh C., Praveen S. V. D. and Varma K. (2015) Heat and mass transfer in MHD free 

convection chemically reactive and radiative flow in a moving inclined porous plate 

with temperature dependent heat source and joule heating, International Journal of 

Management, Information Technology and Engineering. Vol. 3, Issue 11, 63-74 

Venkateswarlu M, and Pdman P (2015) Unsteady MHD free convective Heat and Mass 

Transfer in a Boundary Layer Flow Past a vertical Permeable plate with Thermal 

Radiation and Chemical Reaction. Internal Conference of Computational Heat and 

Mass Transfer, Procedia Engineering 127,  791 – 799 

Ziyauddin, Kumar M (2010) Radiation effect on unsteady MHD heat and mass transfer flow 

on a moving inclined porous heated plate in the presence of chemical reaction. Int J 

Math Modell Simul App l3: 155–163.  

 

 

 

 

 

 

 

 

 



International Journal of Applied Science and Mathematical Theory ISSN 2489-009X Vol. 4 No. 3 2018 

www.iiardpub.org 

  

 
IIARD – International Institute of Academic Research and Development 

 
Page 40 

 

Appendix 

𝑀2 =
𝜈𝜇2𝛿𝑐𝐻𝑂

′2

𝜌𝑣𝑜
′2  ;  χ2 =

𝜈2

𝐾𝑣𝑜
′2  ;  𝐺𝑟𝑇

=
𝑔𝜈𝐵𝑇𝜃(𝑇𝑤

′−𝑇∞)

𝑉𝑂𝑣𝑜
′2  ;  𝐺𝑟𝑐

=
𝑔𝜈𝐵𝐶𝐶(𝐶𝑤

′−𝐶∞)

𝑉𝑂𝑣𝑜
′2 ; 𝑃𝑟 =

𝜇𝐶𝑝

𝑘
 ;  𝑅2 =

16𝜈𝛿′𝑇𝑂
3

3𝑘′  ;  𝐸𝐶 =
𝑉𝑂

2

𝐶𝑝(𝑇𝑤
′ −𝑇∞)

;  𝑆𝑐 =
𝜈

𝐷
;  (𝑀2 + χ2) = 𝑁1; 𝑁2 = 𝑀2 + χ2 + 𝑖𝜔  

𝑚1 =
𝑆𝑐+√(𝑆𝑐

2+4𝑆𝑐𝐾𝑟)

2
 ;𝑚2 =

𝑃𝑟

(1+𝑅2)
= 𝑚4 ; 𝑚3  =

1+√(12+4𝑁1)

2
= 𝑚5; 𝑚6  =

𝑆𝑐+√(𝑆𝑐
2+4(𝑆𝑐𝐾𝑟+𝑆𝑐𝑖𝜔))

2
 

𝑚7 =
𝑃𝑟+√(𝑃𝑟

2+4𝑃𝑟𝑖𝜔(1+𝑅2))

2(1+𝑅2)
= 𝑚9 ; 𝑚8  =

1+√(12+4𝑁2)

2
= 𝑚10 

𝐷1 = 𝐷2 + 𝐷3 − 𝑢𝑠;  𝐷2 =
𝐺𝑟𝑇

𝑐𝑜𝑠∝

𝑚2
2−𝑚2−𝑁1

;  𝐷3 =
𝐺𝑟𝑐𝑐𝑜𝑠∝

𝑚1
2−𝑚1−𝑁1

;  𝐾 = 1; 𝐷4 = 𝐷5 + 𝐷6 + 𝐷7 − 𝐷8 −

𝐷9 + 𝐷10  

𝐷5 =
𝑃𝑟𝑚3

2𝐷1
2

[4(1+𝑅2)𝑚3
2−2𝑃𝑟𝑚3]

; 𝐷6 =  
𝑃𝑟𝑚2

2𝐷2
2

[4(1+𝑅2)𝑚2
2−2𝑃𝑟𝑚2]

; 𝐷7 =  
𝑃𝑟𝑚1

2𝐷3
2

[4(1+𝑅2)𝑚1
2−2𝑃𝑟𝑚1]

; 𝐷8 =

 
2𝑃𝑟𝑚2𝑚3𝐷1𝐷2

[(1+𝑅2)(𝑚2+𝑚3)2−𝑃𝑟(𝑚2+𝑚3)]
; 𝐷9 =  

2𝑃𝑟𝑚1𝑚3𝐷1𝐷3

[(1+𝑅2)(𝑚1+𝑚3)2−𝑃𝑟(𝑚1+𝑚3)]
; 𝐷10 =

 
2𝑃𝑟𝑚1𝑚2𝐷2𝐷3

[(1+𝑅2)(𝑚1+𝑚2)2−𝑃𝑟(𝑚1+𝑚2)]
; 𝐷11 = 𝐷12 − 𝐷13 − 𝐷14 − 𝐷15 + 𝐷16 + 𝐷17 − 𝐷18    

𝐷12 =
𝐺𝑟𝑇

𝐷4𝑐𝑜𝑠∝

[𝑚4
2−𝑚4−𝑁1]

; 𝐷13 =  
𝐺𝑟𝑇

𝐷5𝑐𝑜𝑠∝

[𝑚3
2−𝑚3−𝑁1]

; 𝐷14 =   
𝐺𝑟𝑇

𝐷6𝑐𝑜𝑠∝

[𝑚2
2−𝑚2−𝑁1]

   

𝐷15 =
𝐺𝑟𝑇

𝐷7𝑐𝑜𝑠∝

[𝑚1
2−𝑚1−𝑁1]

; 𝐷16 =   
𝐺𝑟𝑇

𝐷8𝑐𝑜𝑠∝

[[(𝑚2+𝑚3)2−(𝑚2+𝑚3)−𝑁1]]
; 𝐷17 =   

𝐺𝑟𝑇
𝐷8𝑐𝑜𝑠∝

[[(𝑚1+𝑚3)2−(𝑚1+𝑚3)−𝑁1]]
   

𝐷18 =
𝐺𝑟𝑇

𝐷8𝑐𝑜𝑠∝

[[(𝑚1+𝑚2)2−(𝑚1+𝑚2)−𝑁1]]
;  𝐷19 = 1 − 𝐷20 ; 𝐷20 =

𝑆𝑐𝐴𝑚1

[𝑚1
2−𝑆𝑐𝑚1−(𝑆𝑐𝐾𝑟+𝑆𝑐𝑖𝜔)]

;   𝐷21 = −𝐷22  

𝐷22 =
𝑃𝑟𝐴𝑚2

[(1+𝑅2)𝑚2
2−𝑃𝑟𝑚2−𝑃𝑟𝑖𝜔]

; 𝐷23 = 𝐷24 + 𝐿1 + 𝐿2 + 𝐷26 − 𝐷28 − 1  

𝐷24 =
𝐺𝑟𝑇

𝐷21𝑐𝑜𝑠∝

[𝑚7
2−𝑚1−𝑁2]

; 𝐷25 =  
𝐺𝑟𝑇

𝐷22𝑐𝑜𝑠∝

[𝑚2
2−𝑚2−𝑁2]

; 𝐷26 =
𝐺𝑟𝐶

𝐷19𝑐𝑜𝑠∝

[𝑚6
2−𝑚6−𝑁2]

; 𝐷27 =
𝐺𝑟𝐶

𝐷20𝑐𝑜𝑠∝

[𝑚1
2−𝑚1−𝑁2]

;  

𝐷28 =
𝐴𝑚3𝐷1

[𝑚3
2−𝑚3−𝑁2]

; 𝐷29 =
𝐴𝑚2𝐷2

[𝑚2
2−𝑚2−𝑁2]

; 𝐷30 =
𝐴𝑚1𝐷3

[𝑚1
2−𝑚1−𝑁2]

; 𝐽 = −1   

𝐷31 = −𝐷32 + 𝐿3 + 𝐿4 + 𝐿5 − 𝐿6 − 𝐿7 + 𝐿8 + 𝐷39 − 𝐷40 − 𝐷41 − 𝐷42 + 𝐷43 + 𝐷44 −
𝐷45 + 𝐷46 + 𝐷47   

𝐷32 =
𝑃𝑟𝐴𝑚4𝐷4

[(1+𝑅2)𝑚4
2−𝑃𝑟𝑚4−𝑃𝑟𝑖𝜔]

; 𝐷33 =
2𝑃𝑟𝐴𝑚3𝐷5

[(1+𝑅2)𝑚3
2−2𝑃𝑟𝑚3−𝑃𝑟𝑖𝜔]

; 𝐷34 =

2𝑃𝑟𝐴𝑚2𝐷6

[(1+𝑅2)𝑚2
2−2𝑃𝑟𝑚2−𝑃𝑟𝑖𝜔]

; 𝐷35 =
2𝑃𝑟𝐴𝑚1𝐷7

[(1+𝑅2)𝑚1
2−2𝑃𝑟𝑚1−𝑃𝑟𝑖𝜔]

; 𝐷36 =

𝑃𝑟𝐴(𝑚2+𝑚3)𝐷8

[(1+𝑅2)(𝑚2+𝑚3)2−𝑃𝑟(𝑚2+𝑚3)−𝑃𝑟𝑖𝜔]
; 𝐷37 =

𝑃𝑟𝐴(𝑚1+𝑚3)𝐷9

[(1+𝑅2)(𝑚1+𝑚3)2−𝑃𝑟(𝑚1+𝑚3)−𝑃𝑟𝑖𝜔]
; 𝐷38 =

𝑃𝑟𝐴(𝑚1+𝑚2)𝐷10

[(1+𝑅2)(𝑚1+𝑚2)2−𝑃𝑟(𝑚1+𝑚2)−𝑃𝑟𝑖𝜔]
; 𝐷39 =

2𝑃𝑟𝑚3𝑚8𝐷1𝐷23

[(1+𝑅2)(𝑚3+𝑚8)2−𝑃𝑟(𝑚3+𝑚8)−𝑃𝑟𝑖𝜔]
; 𝐷40 =

2𝑃𝑟𝑚3𝑚8𝐷1𝐷23

[(1+𝑅2)(𝑚2+𝑚8)2−𝑃𝑟(𝑚2+𝑚8)−𝑃𝑟𝑖𝜔]
; 𝐷41 =

2𝑃𝑟𝑚2𝑚8𝐷2𝐷23

[(1+𝑅2)(𝑚1+𝑚8)2−𝑃𝑟(𝑚1+𝑚8)−𝑃𝑟𝑖𝜔]
; 𝐷42 =

2𝑃𝑟𝑚3𝑚7𝐷1𝐷24

[(1+𝑅2)(𝑚3+𝑚7)2−𝑃𝑟(𝑚3+𝑚7)−𝑃𝑟𝑖𝜔]
;

2𝑃𝑟𝑚2𝑚7𝐷2𝐷24

[(1+𝑅2)(𝑚2+𝑚7)2−𝑃𝑟(𝑚2+𝑚7)−𝑃𝑟𝑖𝜔]
=

𝐷43;
2𝑃𝑟𝑚1𝑚7𝐷3𝐷24

[(1+𝑅2)(𝑚1+𝑚7)2−𝑃𝑟(𝑚1+𝑚7)−𝑃𝑟𝑖𝜔]
= 𝐷44;

2𝑃𝑟𝑚3𝑚6𝐷1𝐷26

[(1+𝑅2)(𝑚3+𝑚6)2−𝑃𝑟(𝑚3+𝑚6)−𝑃𝑟𝑖𝜔]
=

𝐷45;
2𝑃𝑟𝑚2𝑚6𝐷2𝐷26

[(1+𝑅2)(𝑚2+𝑚6)2−𝑃𝑟(𝑚2+𝑚6)−𝑃𝑟𝑖𝜔]
= 𝐷46;

2𝑃𝑟𝑚1𝑚6𝐷3𝐷26

[(1+𝑅2)(𝑚1+𝑚6)2−𝑃𝑟(𝑚1+𝑚6)−𝑃𝑟𝑖𝜔]
=

𝐷47;
2𝑃𝑟𝑚3

2𝐷1𝐷28

[4(1+𝑅2)𝑚3
2−2𝑃𝑟𝑚3−𝑃𝑟𝑖𝜔]

= 𝐷48;
2𝑃𝑟𝑚2𝑚3𝐷2𝐷28

[(1+𝑅2)(𝑚2+𝑚3)2−𝑃𝑟(𝑚2+𝑚3)−𝑃𝑟𝑖𝜔]
=

𝐷49;
2𝑃𝑟𝑚1𝑚3𝐷3𝐷28

[(𝑅2)(𝑚1+𝑚3)2−𝑃𝑟(𝑚1+𝑚3)−𝑃𝑟𝑖𝜔]
= 𝐷50;

2𝑃𝑟𝑚2𝑚3𝐿1𝐷1

[(1+𝑅2)(𝑚2+𝑚3)2−𝑃𝑟(𝑚2+𝑚3)−𝑃𝑟𝑖𝜔]
  =
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𝐷51;
2𝑃𝑟𝑚2

2𝐿1𝐷2

[4(1+𝑅2)𝑚2
2−2𝑃𝑟𝑚2−𝑃𝑟𝑖𝜔]

= 𝐷52;
2𝑃𝑟𝑚1𝑚2𝐿1𝐷3

[(1+𝑅2)(𝑚1+𝑚2)2−𝑃𝑟(𝑚1+𝑚2)−𝑃𝑟𝑖𝜔]
=

𝐷53;
2𝑃𝑟𝑚1𝑚3𝐿2𝐷1

[(1+𝑅2)(𝑚1+𝑚3)2−𝑃𝑟(𝑚1+𝑚3)−𝑃𝑟𝑖𝜔]
= 𝐷54;

2𝑃𝑟𝑚1𝑚2𝐿2𝐷2

[(1+𝑅2)(𝑚1+𝑚2)2−𝑃𝑟(𝑚1+𝑚2)−𝑃𝑟𝑖𝜔]
= 𝐷55;  𝐷56 =

2𝑃𝑟𝑚1
2𝐿2𝐷3

[4(1+𝑅2)𝑚1
2−2𝑃𝑟𝑚1−𝑃𝑟𝑖𝜔]

    

𝐷57 = 𝐷66 − 𝐷58 + 𝐿9 − 𝐿10 − 𝐿11 + 𝐿12 − 𝐿13 + 𝐿14 + 𝐿15 − 𝐷74 − 𝐷75 + 𝐷76 + 𝐷77 −
𝐷78 − 𝐷79 + 𝐷80 − 𝐷81 − 𝐷82  

𝑚5𝐴𝐷11

[𝑚5
2−𝑚5−𝑁2]

= 𝐷58 ;
𝑚4𝐴𝐷12

[𝑚4
2−𝑚4−𝑁2]

= 𝐷59;
2𝑚3𝐴𝐷13

[𝑚3
2−𝑚3−𝑁2]

= 𝐷60;
2𝑚2𝐴𝐷14

[𝑚2
2−𝑚2−𝑁2]

= 𝐷61;
2𝑚1𝐴𝐷15

[𝑚1
2−𝑚1−𝑁2]

=

𝐷62;
(𝑚2+𝑚3)𝐴𝐷16

[(𝑚2+𝑚3)2−(𝑚2+𝑚3)−𝑁2]
= 𝐷63;

(𝑚1+𝑚3)𝐴𝐷17

[(𝑚1+𝑚3)2−(𝑚1+𝑚3)−𝑁2]
= 𝐷64;

(𝑚1+𝑚2)𝐴𝐷18

[(𝑚1+𝑚2)2−(𝑚1+𝑚2)−𝑁2]
=

𝐷65;
𝐺𝑟𝑇

𝐷31𝑐𝑜𝑠∝

[𝑚9
2−𝑚9−𝑁2]

= 𝐷66;
𝐺𝑟𝑇

𝐷32𝑐𝑜𝑠∝

[𝑚4
2−𝑚4−𝑁2]

= 𝐷67;
𝐺𝑟𝑇

𝐿3𝑐𝑜𝑠∝

[𝑚3
2−𝑚3−𝑁2]

= 𝐷68;
𝐺𝑟𝑇

𝐿4𝑐𝑜𝑠∝

[𝑚2
2−𝑚2−𝑁2]

=

𝐷69;
𝐺𝑟𝑇

𝐿5𝑐𝑜𝑠∝

[𝑚1
2−𝑚1−𝑁2]

= 𝐷70;
𝐺𝑟𝑇

𝐿6𝑐𝑜𝑠∝

[(𝑚2+𝑚3)2−(𝑚2+𝑚3)−𝑁2]
= 𝐷71;

𝐺𝑟𝑇
𝐿7𝑐𝑜𝑠∝

[(𝑚1+𝑚3)2−(𝑚1+𝑚3)−𝑁2]
=

𝐷72;
𝐺𝑟𝑇

𝐿8𝑐𝑜𝑠∝

[(𝑚1+𝑚2)2−(𝑚1+𝑚2)−𝑁2]
= 𝐷73;

𝐺𝑟𝑇
𝐷39𝑐𝑜𝑠∝

[(𝑚3+𝑚8)2−(𝑚3+𝑚8)−𝑁2]
= 𝐷74;

𝐺𝑟𝑇
𝐷40𝑐𝑜𝑠∝

[(𝑚2+𝑚8)2−(𝑚2+𝑚8)−𝑁2]
=

𝐷75;
𝐺𝑟𝑇

𝐷41𝑐𝑜𝑠∝

[(𝑚1+𝑚8)2−(𝑚1+𝑚8)−𝑁2]
= 𝐷76;

𝐺𝑟𝑇
𝐷42𝑐𝑜𝑠∝

[(𝑚3+𝑚7)2−(𝑚3+𝑚7)−𝑁2]
= 𝐷77;

𝐺𝑟𝑇
𝐷43𝑐𝑜𝑠∝

[(𝑚2+𝑚7)2−(𝑚2+𝑚7)−𝑁2]
=

𝐷78;
𝐺𝑟𝑇

𝐷44𝑐𝑜𝑠∝

[(𝑚1+𝑚7)2−(𝑚1+𝑚7)−𝑁2]
= 𝐷79;

𝐺𝑟𝑇
𝐷45𝑐𝑜𝑠∝

[(𝑚3+𝑚6)2−(𝑚3+𝑚6)−𝑁2]
= 𝐷80;

𝐺𝑟𝑇
𝐷46𝑐𝑜𝑠∝

[(𝑚2+𝑚6)2−(𝑚2+𝑚6)−𝑁2]
=

𝐷81;  
𝐺𝑟𝑇

𝐷47𝑐𝑜𝑠∝

[(𝑚1+𝑚6)2−(𝑚1+𝑚6)−𝑁2]
= 𝐷82  

𝐿1 = 𝐷25 + 𝐷29;  𝐿2 = 𝐷27 + 𝐷30; 𝐿3 = 𝐷33 + 𝐷48;  𝐿4 = 𝐷34 + 𝐷52;  𝐿5 = 𝐷35 + 𝐷56;  𝐿6

= 𝐷36 + 𝐷49 + 𝐷51;  𝐿7 = 𝐷37 + 𝐷50 + 𝐷54;  𝐿8 = 𝐷38 + 𝐷53 + 𝐷55 ; 𝐿9

= [𝐷59 + 𝐷67]; 𝐿10 = [𝐷60 + 𝐷68];  𝐿11 = [𝐷61 + 𝐷69]; 𝐿12

= [𝐷62 + 𝐷70]; 𝐿13 = [𝐷63 + 𝐷71]; 𝐿14 = [𝐷64 + 𝐷72]; 𝐿15 = [𝐷65 + 𝐷73] 
 


